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Abstract—in this paper, we are concerned with thefinite-length [Concentration Around Ensemble Average] For any given
analysis of low-density parity-check (LDPC) codes when used over § > 0 there exists am(§) > 0 such that
the binary erasure channe(BEC). The main result is an expression - - —al8)
for the exact averagdit and block erasure probability for a given Pr {|Py(G, €) — Ecinap [Ph (G, )] >6} Sem @™,
regular ensemble of LDPC codes when decodéiratively. We also
give expressions for upper bounds on the average bit and block [Convergence of Ensemble Average to Cycle-Free Case]
erasure probability for regular LDPC ensembles and the standard There exists a constasitsuch that
random ensemble undermaximum-likelihood (ML) decoding Fi- 3
nally, we present what we consider to be the most important open |[EC(n,,\,p) [P{)T(Q 6)] _ [EC(oo,,\,p) [P{)T(Q 6)” <

problems in this area. n

Index Terms—Belief propagation, binary erasure channel |nwords, the first statement asserts that the behavior of the indi-
(BEC), finite-length analysis, low-density parity-check (LDPC) ;iqual codes concentrates around the ensemble average and that
codes. - L L

this concentration is exponential in the block length. The second
statement asserts that the ensemble average converges to the en-
I. INTRODUCTION semble average of the cycle-free case as the block length tends
N this paper, we are concerned with firéte-lengthanalysis to infinity.2 Note, thpugh, that the speed of the convergence to
élpe cycle-free case is known to be of order at Iélaand is likely

of low-density parity-check (LDPC) codes when used ovt b | il at best. wh th o th bl
thebinary erasure channgBEC). The main resultis an expres-0 € polynomial at best, whereas the converge to the ensemble

sion for theexact aveage bit and block erasure probability for average is exponential m_the bI_OCk lengthhe above two sFate-
a givenregular ensemble(n, 21 1, 2 1) when decodeit- ments suggest the following. Fix the block lengtand consider

erativelywith message-passing algorithms as in, e.g., [11]. F .|V|dual elements 9@(”’.)" .p.)' Although the behavior of in-
an introduction into the terminology and basic results of LDP vidual codes can differ significantly from that of the cycle-free

codes we refer the reader to [3]-[9], [11]-[15]. .aj}/r_r;ptolt!c) tC ase fo'r rlnko ciertati block Ientgtk;sathe beg?;]nor of
For a particular code? in a given ensemblé(n, 3, p), let individual instances is likely to be concentrated around the en-

PIY(a, ¢) denote the expectehit erasureprobability if G is semble average. Let us demonstrate this point by means of an
used to transmit over a BEC with parameteand if the re- example. Consider the situation depicted in Fig. 1. The two solid

- IT i

ceived word is decoded iteratively by the standard belief prop Hrves reprtlaasgrﬁc(m, z?, ﬁ)[Pllqd(Gv <)] (left solid _curlveLand
gation decoder. Here, the expectation is over all realizations (00,0225 [Py (G, €] (right soli rcurve), respectively. As we
the channel. LelEc(,,, )[P{,T(G, ¢)] denote the correspondingcan see, for a block Ie_n_gth of = 512, the average bit erasure
ensemble avage The /%ollowing two results are well known probability differs significantly from the one of the cycle-free
see [7], [9] "case. Also plotted are curves correspondind’t$ (G, ¢) for

e several randomly chosen instancesC¢612, »2, ) (dashed
curves). These curves follow the ensemble average very closely
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Fig. 1. Concentration of the bit erasure probabilty* (G, ¢) for specific
instancess € C(512, 22, 2%) (dashed curves) around the ensemble average
Ec(s12,22, .5y [PLT (G, €)] (left solid curve). (It is noteworthy that there appearc. o 2 .5
to be two dominant modes of behavior.) Also shown is the performance of tﬁ'eq 2. Aspecific elemertt from the ensemblé(10, #, 2°).
cycle-free casec (. .2 .5, [P1T (G, €)] (right solid curve).

are of considerable value. Viewing the decoding operation from
a standard message-passing point of view, it is hard to see how
one could derive analytic expressionskQf,,, », ,»[PLI (G, €)].
Cycles in the graph seem to render the finite-length problem
quite intractable. The crucial innovation in this paper is to use
as a starting point @ombinatorialcharacterization of decoding
failures. This combinatorial characterization was originally pro-
posed in [12] in the context of the efficieahcodingof LDPC
codes.

To recall some notation, an ensemble of LDPC codes
C(n, A, p) is characterized by its block lengtly, a variable
node degree distributioh(z) := > A\;z"~!, and a check node
degree distributiop(z) = > p;x* L. Here,\;(p;) is equal to
the probability that a randomly chosen edge is connected to
a variable (check) node of degréeTo be specific, consider
regularensembles of the foridi(n, 1, *~1). For example,
atypical element o€(10, z*, z°) is shown in Fig. 2. Note that iy 3 The sefv,, vo, vs, va} is a stopping set.
each variable node participates in exactly three checks and that O
each check node checks exactly six variable nodes.

The following definition characterizes the key object needed The nextlemma shows the crucial role that stopping sets play

to study the finite-length performance of LDPC codes over th@ the process of iterative decoding of LDPC codes when used
BEC. over the BEC.

of V, the set of variable nodes, such that all neighbors afe ~coder Performance]:LetG be a given element frof(x, A, p).
connected te& at least twice. Assume that we use to transmit over the BEC and that we

) ) decode the received word in an iterative fashion until either
As one can see from Fig. 3, for the particular sh@the set  he codeword has been recovered or until the decoder fails to
{vi, v2, v3, v4} is a stopping set. progress further. Lef denote the subset of the set of variable
Note, in particular, that the empty set is a stopping set. Thedes which is erased by the channel. Then the set of erasures
space of stopping sets is closed under unions, i.6;, #ndS,  which remain when the decoder stops is equal to the unique
are both stopping sets then saSisU &, (To see this note that maximal stopping set of .
if c is a neighbor ofS; U S» then it must be a neighbor of at Proof: Let S be a stopping set containedn We claim
least one ofS; or S», assume that is a neighbor ofS;. Since that the iterative decoder cannot determine the variable nodes
&1 is a stopping set; has at least two connections & and contained inS. This is true, since even if all other bits were
therefore at least two connections$p U S,.) Each subset of known, every neighbor of has at least two connections to the
V thus clearly contains a unique maximal stopping set (whigetS and so all messages $will be erasure messages. It fol-
might be the empty set). lows that the decoder cannot determine the variables contained




1572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

in the unigue maximal stopping set contained irConversely, vy

if the decoder terminates at a s&tthen all messages entering

this subset must be erasure messages which happens only if Vv-1
all neighbors ofS have at least two connections&o In other Vs
words,S must be a stopping set and, since no erasure contained

in a stopping set can be determined by the iterative decoder, it Vy—3

must be the maximal such stopping set. O

In order now to determine the exact (block) erasure proba-
bility under iterative decoding it remains to find the probability
that a random subset of the set of variable nodes (the set of
“erasures”) of a randomly chosen element from the ensemble
C(n, #* 71, z°~1) contains a nonempty stopping set. We show
in Theorem 2.1 that this can be domeactly In Section IIl, we
consider the maximum likelihood (ML) performance of LDPC
ensembles as well as of the standard random ensemble. It is in-
structive to study the ML performance since this makes it pos-
Slb.le to f:hStlﬂgL’lSh how muc_h of the incurred performance IO_ |S .4. There are variable nodes of degrée c check nodes of degreg and
of iterative coding systems is due to the suboptimal decodmﬁesuwcheck node of degreé
and how much is due to the particular choice of codes. Finally,

in Section IV, we present what we consider to be the most im- _ B} N -
portant open problems in this area. (Note, in (2.4), thatoef (((1 +2)" —1—rz)"(1+z), ) = 0
if d+kr—s1<0soN(v—s,c—k, d+ kr — s1) need not

be defined for this case.) Then

[EC(n, x1717xr71) [P{,T(G, (:)]

Il. FINITE-LENGTH ANALYSIS

A. LDPC Codes Under Belief Propagation Decoding

N () e e 5 ()O (e 50, 0)
The characterization of decoding failures stated in Lemma 1.1 N ze: <e> <@ Z n Tf(e,nk0) ~
reduces the task of the exact determination of the performance '
of iterative decoders to a combinatorial problem. In this section, Ec(n,z1-1,2:-1) [PH (G, €)
we present a solution to that combinatorial problem. In the se-

quel, if f(x) is a power seriesf(z) = 3,5, fiz', we denote => <:> @Y

o

N0 (e, s, nt, 0
(O (e 5y

by coef(f(z), %) its ith coefficient ;. s T (e, n, 0)
Theorem 2.1:Let P (G, ) denote thebit erasureproba- nel o . N (e, nt,0)

bility when transmitting over a BEC with erasure probability => <e> (€ 1- m

€ using a code, G € C(n, 171, 2¥71), and a belief propaga- e=0 P

tion decoder. Hereby we assume that we iterate until either all "/

erasures have been determined or the decoder fails to progress + Z <6> G

further. In a similar manner, I&%" (G, €) denote thélock era- e=nl

sure probability. Define the function®(v, ¢, d), N(v, ¢, d),

; heree .= 1 —e.
M(v, ¢, d), andO(v, s, c, d) by the recursions wheree ¢

Proof: Consider the situation depicted in Fig. 4. There are

d+cr v variable nodes of degreg ¢ check nodes of degresg and
T(v, ¢, d) := < 1 ) (v1)! (2.1) onesupercheck node of degreé* Label thev1 variable node
Y sockets in some arbitrary but fixed way with elements from the
N(v, ¢, d):=T(v, ¢, d) — M(v, c, d) (2.2) set[v1] := {1, 2,..., v1} and, in a similar manner, label the
v cr + d check node sockets in some arbitrary but fixed way with
M(uv, ¢, d) =Y < ) O(v, s, ¢, d) (2.3) elements from the sétr + d]. Let

0 . a: [vl] = [v], Biler+d] — [c+1]
O(v, s, ¢, d):= > <k>coef(((1 T+ a) —1—rx)k

- denote maps which describe the association of variable and

., check node sockets to their respective nodes, so that, e.g., if
(1 + )4 2*1)(s1)! «(3) = 5 then this signifies that the third variable node socket
_ _ _ emanates from the fifth variable node. We always labeldhe
Nv=s c—k dthkr=s1) (24) regular check nodes byr] and set the label of the super check

and the boundary condition node to(c + 1).

. 4As we will see shortly, it is the introduction of this extra check node which
O(v, s, ¢,d) =0, if s<0orvl >cr+d. makes it possible to write down the recursions.
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For simplicity, we will refer to a particular realization of con-
necting thevl variable node sockets to the + d check node
sockets as aonstellation More precisely, a constellation is an
injective map (sa/1 < cr 4 d is required)

7: [vl] — [er 4 d]
so that variable node sockéti € [v1], is connected to check Ve-3 @51
node socket (i), 7(¢) € [cr + d]. Let T (v, ¢, d) denote the
set of all such maps and I1&%v, ¢, d) := |7 (v, ¢, d)|. Since
there are(cf{d) degrees of freedom in choosing which of the
check node sockets are connected and a fufdieY ways of

E A Y

permuting the corresponding edg&¥w, ¢, d) is as given in va
(2.1). V3
We will say that a constellation containst@pping ses if it

contains a nonempty subset of the variable nodes such that any V2
regular check node: which is connected t&, is connected to

S at least twice More preciselyS, S C V, is a stopping set if V1

i € [v1]: a(i) € S; B(r(3)) =} # 1, Vi€l Fig.5. There are variable nodes of degrég « check nodes of degree and

Note that this definition is slightly more genera| than the On(é‘lesupercheck node of degree FurtherS is a subset oV, the set of variable
. . . . ; .nodes, of cardinality.

given in Definition 1.1 since in our current setup we have in

addition a super check node of degkgdn particular, in this ) ]
extended definitiomo restrictionsare placed on the number ofWays of choosing the check node sockets to whiclz tremckets

connections from the stopping s&to the super check node. of the setS are conngcted. Finally, tha edges emanating from
Clearly, the seff (v, ¢, d) can be partitioned into the set ofS ¢an be permuted ifs1)! ways. _
maps that containo stopping set, call this sét'(v, ¢, d), and So far we have only been concerned with edges that emanate

the set of maps that contaitt least onestopping set, call this from &. We still need to ensure that we only count those con-
setM(v, ¢, d). Letting stellations for whichS is themaximalstopping set. Consider a

_ setL C V\S. Assume thatl has the property that any regular
N, ¢, d) = N (v, ¢, d) check node which is connected fobut notto S is connected

and to £ at least twice. Then clearlyU £ is also a stopping set and
M, ¢, d) = |M(v, ¢, d)| S0 & is not the maximal stopping set. Conversely, assume that
we, therefore, have the relationship (2.2). § is not the maximal stopping set. LEtbe the maximal stop-

Consider nowM(v, ¢, d), the set of constellations that conPing set and considet := K\S. By definition, every regular
tain at least one stopping set. Observe th&y indsS, are two check node which is connected fdis connected tdC at least

stopping sets then theimionis a stopping set. It follows that twice. Therefore, every regular check node which is connected

ping set. Therefore, we have thatS will be Lhe uniql;]e rr;naximal stoprp])ing seti\S d(laes nhot )
contain a subsef with the property that every regular chec
M, e, d)= | J O, S, ¢, d) (25) " hode which is connected 16 but not tos is connect taZ at
SE] ) . least twice. How many constellations are there which fulfill this
where O(v, S, ¢, d) denotes the set of constellations whichy.onerty2 A moment's thought shows that this number is equal
haveS as their uniqgue maximal stopping set. By some abu&g:N(v ~s, c—k, d+kr — s1): there ares — s variable nodes
of notation, let in V\S; there are furthee — k regular check nodes which are
O(v, |S|, ¢, d) = |O(v, S, ¢, d)| not neighbors ofS; and the remainingl + kr — s1 available
where we have used the fact that the cardinali6f, S, ¢, d) sockets can be combined relegated the super check node.
only depends on the cardinality & but not on the specific ~ The bit erasure and block erasure probability can be ex-
choice of variable nodes. Since there f¢ choices ofS of ~Pressed in a straightforward manner in term&xf, s, c, 0).
sizes and since the union in (2.5) is disjoint we get (2.3).  The decoder terminates in the unique maximal stopping set
It remains to prove the recursion (2.4) which linksontained in the set of erased bits. If we are interested in the
O(v, s, ¢, d) to N(v, ¢, d). Consider the situation depictedaverage fraction of erased bits remaining, then a maximal
in Fig. 5, where a specific sef of cardinality s is chosen. Stopping set of size will causes erasures. If we are interested
We are interested in counting the elementsify, S, ¢, d). in the block erasure probability then each nonempty stopping
Note that by definition ofO(v, S, ¢, d), S is the unique Setcounts equally. From these observations the stated formulas
maximal stopping set. First, this implies thdtis a stopping for the erasure probabilities follow in a straightforward manner.
set. Consider those elements®@fuv, S, ¢, d) for which the set For the second expression giving the block erasure probability
S is connected td: (out of thec) regular check nodes. Therewe argue as follows: the quantity
are(;) ways of choosing these check nodes. Next, there are < Ne, n%) 0))

coef (1 + ) — 1 —ra)*(1 4 2)%, z*%) m
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is the probability that a randomly chosen subset of sizen- 's given byr(<") = 0.260399. Frome(l — (1 —2)7)" = x we
tains a nonempty stopping set. If we multiply this quantity Witlg

the probability that the size of the erasure set is equaland e(z) = x _ z > (")
sum over alk then we get the block erasure probability. We can (1-(1—x))? -
simplify the expressmn by verifying that this quantity is equ
to one ife > nt

Example 1: Consider the ensemblé(n, =*, z°). Fig. 6 <+02, z(1—(1- x)5)> , x> ().
ShowsEc(,,, .2, .5)[P11 (G, €)] as a function of for n = 27, (1-(1-2))

i € [5]. Also shown is the lIMitEc (.. .2 .5)[PLT (G, €)] (cycle-

free case). This limiting curve can be determined in the foB. Efficient Evaluation of Expressions

lowing way. Recall that théhresholde* associated to a degree
distribution pair(\, p) can be characterizedsas

aéo that the limit curve is given in parametric form by

It is clear that the recursions stated in Theorem 2.1 quickly
become impractical to evaluate as the block length grows (this
¢ :=supfe > 0: eA(1 — p(1—2z)) —x < 0, Yz € (0, 1]}.  isinfact the reason why in Fig. 6 we only depicted the curves
up to length32!). For the cased = 2 or1 = 3 the following
Assume now that the initial erasure probabilifg strictly above recursions are substantially easier to evaluate.
this threshold™*. In this case, the decoder will not terminate suc- Fig. 7 shows the average block erasure probability for the en-
cessfully and a fixed fraction of erasures will remain. To detesembleC(n, =%, z°) for block lengthsn = 2¢, i €, as deter-
mine this fraction define:(¢), wheree > ¢*, as mined by the following expressions.

z(e)i=sup{0 <z < e eX(l — p(1 —2)) —xz =0} Theorem 2.2:Letasz(v, u, s, d) andasz(v, u, s, d) be recur-

sively defined by
In words,z(¢) is the erasure probability of the messages emitted

from the variable nodes at the point where the decoder termias(v, u, s, d)s=az(v—1, u—1, s — 1, d)
nates. To this corresponds an erasure probability of the mes-
sages emitted by the check noded ef p(1 — z(¢)). From this
guantity it is now easy to see that the corresponding bit erasure tay(v—1,u—1, s, d)s
probability is equal taL(1 — p(1 — z(¢))), where

_ fox A=) d=
Jo AMz)dz and

is the variable node degree distribution from the node perspec; a(v, u, s, d)s=as(v—1, u—3, s—3 d)l
tive. Therefore, the limiting curve is given in parametric form as T 2

+asz(v—1,u—2, s—2, d)
-((u=s)r—(v—1)1+s—24d)

-(ur+(1—r)s—vl+1l—1+d)

+az(v—1, u—2, s—2, d),
L) :

v>1,u>0,s>1 (2.6)

(e, eL(1 — p(1 — z(€)))), €>e*.

For the specific example of th@, 6)-regular code it is more
convenient to parameterize the curve byinstead ofc). We +asz(v—1,u—2, s—1, d)((s—1)+1/2)
know from [1] thate* = 0.42944 and th rr ndi *

ow from [1] thate 0.42944 and the corresponding(c*) Fag(v—1, u—1, s—1, d)

5Note, that the range of in this definition can be chosen to kee (0, 1]
rather thane € (0, €] since forz € (e, 1] the inequality is automatically (u=s)r—(v—1)1+s-1+d
fulfilled if it is fulfilled for = = e. 2
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S

+az(v—1,u—1, s, d)— parameters of the new constellation are therefdre- v — 1,
r—1 v = » — m, ands’. In order to make this constellation an
(u—s)r—(v — D)1+s—1+d element of A(v — 1, 4 — 1, &) we have to ensure that its

’ < 2 ) labeling is the standard one with label spts- 1] and[u — m)]

for the variable and check nodes, respectively. We do this in the
natural way, i.e., for the pruned constellation all labels smaller
thanv remain unchanged whereas all labels larger thame
+<(“_3_1)r_(v_1)1+3+d> decreased by one. An equivalent procedure is applied at the
2 check node side where we have deletediodes.
s+1 The above procedure can be inverted, i.e., if we start with this
5 ) pruned constellation and add a variable node with lalaelwell
asm check nodes with labels, ..., c,, then we can recover
with the boundary condition our original constellation by connecting the edges in an appro-
1 w=0.5=0.d>0 priate way. Hereby, in adding, e.g., the variable node with label
a(v=0,u,s,d) = { ’ - T v we have to increase all labels of variable nodes with labels
0,  otherwise. equal to at least by exactly one and a similar remark applies for
Define the check nodes. Led™> ¢t (v, u, s) denote the subset of
a(v,u, 5, d) A(v, u, s) which contain the variable nodeof multiplicity
a(v, u, d) := Z AT which is connected to the degree-one check neges. ., c,,.
(r—1) Now note that each elementid*: ¢t~ = (v, u, s) can be re-
constructed in a unique way from an element f A(v — 1,
u—m, s') by addingv andcy, ..., c,,. It follows that a given
N(v, ¢, d) := (11)"o! Z a(v, u, d) ! £ (r — 1)". element ofA(v, u, s) can be _reconstructed i_n exactly as many
— (e —uw)! ways as the number of its variable nodes which have multiplicity
at least one. Note that, by definition, the sum of the multiplic-
The basic idea in deriving these recursions is simple althouijigs of all variable nodes is equal to Therefore, the above
the details become quite cumbersome. Consider a constellagéiement can be rephrased in the following manner. If we weigh
which does not contain a stopping set. Then it must contain&gch reconstruction by the multiplicity of the inserted variable
least one degree-one check node. Peal off this check node, Nede then this weighted sum of reconstructions eqgals
remove it together with its connected variable node, any edgeg-onsider now the recursion far= 2 in more detail. Without
connected to these nodes and any further check nodes whithch loss of generality we assume here that 0, i.e., that
after removal of these edges, have degree zero. The result wiltBgre is no super check node. The general case is a quite straight-
a smaller constellation which again does not contain a stoppitggward extension. On the left-hand side of the recursion we
set and so we can apply this procedure recursively. ReversiMgte az(v, u, s)s, which by our remarks above is equal to the
this procedure, we see that constellations which do not cont#igightedsum of reconstructions. There are only three possible
stopping sets can be built up one variable node at a time. THigys of reaching an element gi(v, v, s) by adding one vari-
gives rise to the stated recursions. Some care has to be take?e node of degree two to a constellatior jr), ., A(v — 1,
make sure that we count each constellation only once sincetin s'). We can have
general constellations might contain more than just one check
node of degree one and so the same constellation can be con-

s

—ag(v—1, u—1, s+d) 1
r—

+az(v—1, u—1, s+1+d)<

5

Then

(W=u—-1¢=s-1)

structed in general in many ways starting from suitable smaller (W =u—1,5=5)

constellations. In the above recursionglenotes the number of or

variable nodes of a constellation,the number of used check (W =u—2 ¢ =s—2)

nodes,s the number of check nodes of degree one, dride

degree of the super check node. Consider first the cas@’ = u — 1, s’ = s — 1), and therefore

In more detail: Consider a stopping-set-free constellation = 1. In this case, we can choose the label v ways and the
which haswv variable nodes, uses check nodess of which labelc; in « ways. Further, there atechoices for the socket of
have degree one, and is labeled by stendardlabels[v] and c; and, as a moment's thought shows+ (1 —r)s—v1+1—1
[«], respectively. LetA(v, u, s) denote the set of all suchchoices for the socket of the second edge. Next, look at the case
constellations and let«(v, «, s) denote its cardinality. We (v’ =« —1, ' = s) which also implies that: = 1. As before,
will now describe how we capruneandgrow constellations. we can choose the labeln v ways, the labet; in « ways, and
This will give rise to the desired recursion. Fix an elemerthere arer choices for the socket @f,. The second edge is now
from A(v, u, s). For each variable node, callit v € [v], let connected to a check node of degree one, and ther¢ ares
m = m(v) denote the number of neighboring check nodes of them and further we can choose one out6f 1 sockets.
degree one. We will calin the multiplicity of v and we will Finally, consider the cas@/’ = v — 2, & = s — 2), which
denote these neighbors ly, ..., ¢,,. To prunean element implies thatm = 2. As before, we can choose the lalseh v
of A(v, u, s), pick a variable node of multiplicity at least ways and the labels;, ¢z in (;) ways and we have? choices
one and delete andcy, ..., ¢, from the constellation. The for the sockets of the two check nodes. Since we count weighted
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reconstructions we also have to add a facétdn summary we ML decoder. LetPNL(H, ¢) denote the correspondirtgock

get the recursion erasure probability Then
as(v, u, s)s =as(v—1, u—1,s—1) [EC(n,k)[Plla\)’IL(Hv )]
-vur(ur+ (1 —r)s—vl+1-1) n ZR(C—l,?’L—k,j)2j
N S (3.1)
+az(v—1,u—1, s)vurs(r — 1) — \c n 2(n—k)e '
+ ag(v -1, u—2,s5— 2)v <Z> r22, [EC(n, k)[PgIL(Hv )]

n—=k e—1
1% >0,s>1. _ Z <n) cegn—e ll _ H(l _ 2in+k)]
e
e=0

We can simplify the above recursions by noting that several fac- =0
tors are common to all terms and only depend:@nd. This n z": <n> cegn—e 3.2)
gives rise to the recursion stated in (2.6). '

Rather than explaining the case= 3 in detail we refer the
reader to [16], where the above approach has been general¥8§re R(l, m, k) is the number of x m binary matrices of
to arbitraryl and a systematic derivation is given. rankk. An enumeration is given in Appendix A. N

There are many more alternative ways in which expressions Proof: First consider the block erasure probablllty._lé‘et
for the average block or bit erasure probability can be derivedfnOte the set of erasures and k&t denote the submatrix of
We mention one which is particular to the case 2. Note that H wh|ch_cqn5|sts of those columns Af which are indexed by
in this case, a stopping-set-free constellation cannot cont:’;\iffl"'aIn a similar manner, let, denate those companents of the

double edge, i.e., each variable node connects two distinct Chcogewordz which are indexed by. From the defining equation

T _ nT
nodes. Therefore, stopping-set-free constellations can be reprg- = 07 we conclude that

sented as regular graphs, whose nodes are the check nodes of the Hexf = Hgazg 3.3)
bipartite graph and whose edges are in one-to-one correspon- . :
dence with variable nodes of the bipartite graph. A moment\%ﬂ;reg a_ [7&]“\3 N?W rlﬁte thft ]!fx denotestr;ge.t_rags_m;tted
thought now shows that stopping-set-free constellations on tﬂ?% ﬁ\évr?tr-h:: d 'Si deen(())fig S)GQ%;ntirglseu:gzeive?'E stg ﬁg{’ﬂ d
bipartite graph correspond tdfarestin the corresponding reg- teyminology,s is called tﬁes'yndromeConsider nO'W the equa-
ular graph. We can, therefore, equivalently count the number '

, tion Hex} = s Since, by assumption, is a valid codeword,
forests, where each node in the regular graph has degree at MRknow that this equation has least onesolution. It hasnul-
r and where sockets and edges are labeled.

tiple solutions, i.e., the ML decoder will not be able to recover
the codeword uniquely, ifif¢ has rank less tha@|. From (A1)
we know that this happens with probability

e=n—k+1

I1l. ML D ECODING

It is instructive to compare the performance of an LDPC ed-— 2(n—R)IE]
semble undeiterative decodindo that of the same LDPC en-
; |€]—1
semble undeML decodingas well as the performance of the 1— ][ (1—2i-n+k) €] <n—k
standard random ensemble unii#ir decoding The reason for = i=0 ’ -
our interest in these quantities is that they indicate how much 1, otherwise.

of the performance loss of iterative coding systems is due to tEFOm this, (3.2) follows in a straightforward manner

choice of codes and how much is due to the choice of the SUbOPeyt consider the bit erasure probability. We claim that a bit
timal decoding algorithm. We note that we assume an ML d‘?'e € cannot be recoveretly an ML decoder iffH ; is an
coder which determines all those bits which are uniquely sp&gament of the space spanned by column& gfy; Tozsee this

ified by the channel observations but does not break ties agd argue as follows. Write the basic equatién — o7 inthe
therefore we will deal with true erasure probabilities rather thagym
error probabilities. - - -

Hevtiyreygoy = Herg + Hywe = 7 + Hpy

A. Standard Random Ensemble Under ML Decoding Since, by assumption; is a codeword we know that thereas

Theorem 3.1:Consider the ensemblé(n, k) of binary |east onechoice ofz; such that this set of equations has solu-
linear codes of lengtlr and dimensiork defined by means tions. The ML decoder will not be able to determingif this
of their parity-check matrixH, where each entry off is equation has solutions fdwoth choices ofr;. But this happens
an independent and identically distributed (i.i.d.) Bernoullff H; is contained in the column space spanneddyy;,,
random variable with parameter one-half. LB}'"(H, ¢) asclaimed. From (A1) we know that the probability tih&t, (;
denote thebit erasure probabilityof a particular code defined has rankj is equal to
by the parity-check matrixd when used to transmit over R(&| - 1,n —k,5)
a BEC with erasure probability and when decoded by an 2(n—k)(|E]—1)
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IV. INTERPRETATION

In comparing Fig. 7 with Fig. 9 (assuming that the shown
union bound is reasonably tight) and Fig. 6 with Fig. 8, we see,
at least for the ensembi&n, x2, x°), that most of the perfor-
mance loss is due to the structure of the codes themselves. No-

102

10

108
0.0

Fig. 8. Ecn,1)[PY(H, €)] as a function of for n = 27,7 € [10] (solid
curves). Also shown is the union bound (dashed curves). As we can see,
for increasing lengths the union bound expressions become more and more
accurate.

tice that for the ensembl&(n, x2, z°) the performance under
iterative decoding is only slightly worse (at least in the “error
floor region”) than the performance under ML decoding. In
particular, even under ML decoding the curves show an “error
floor”
tems. We remark that this effect is even more pronounced since
we look here at block error curves. The corresponding bit error
curves would show this error floor to a lesser degree.

region which is so characteristic of iterative coding sys-

V. OUTLOOK

Although the exact characterization of the average bit and

block erasure probabilities given in this paper are quite encour-

PYL,

it

1

104

10
0.0

Fig. 9. Union bound on the quantify,, .= .s,[P§"(H, €)] as a function
of e forn = 2%, i € [10].

Further, assuming thafs\ (;; has rankj, the probability that 5
Hy;y is an element of the space spanned by the columns of
Hg\ (;y is equal to2’ =", From these two observations (3.1)
follows easily. O

Example 2: Fig. 8 showsE ¢, 1) [Py'"(H, ¢)] as a function
of e for n = 2¢, ¢ € [10]. Also shown is the union bound which
is derived in Appendix B. As we can see, for increasing lengths
the union bound expressions become more and more accurate.

B. LDPC Ensemble Under ML Decoding

We have so far not succeeded in deriving exact expressions
for the ML performance of LPDC ensembles. From the previous
section though one can see that the union bound on the ML era—
sure probability for the random standard random ensemble is
reasonably tight except for very short lengths. Therefore, it is
meaningful to derive the union bound of the ML performance of
LDPC ensembles as well. This is done in Appendix B. Stronger 4)
bounds, especially away from the error floor region, can be ob-

tained using more powerful techniques, see, e.g., [4]. 5)

Example 3: Fig. 9 shows the union bound on the quantity
Ecn, 22,25 [P ""(H, €)] as a function ot for n. = 2/, 4 € [10].

aging, much work remains to be done. We briefly gather here
what we consider to be the most interesting open problems.

In Fig. 1 we see that the individual bit erasure curves fall
into two categories. There is one curve which shows a
fairly pronounced “error floor,” whereas all other curves
exhibit a much steeper slope. In the region where the indi-
vidual curves diverge, the ensemble average is to a large
degree dominated by those “bad” graphs. This suggest
that one can define aexpurgatecensemble and that the
concentration of the individual behavior around the av-
erage of this expurgated ensemble holds down to much
lower erasure probabilities. The question is how to find
a suitable definition of such an expurgated ensemble and
whether one can still find the ensemble average of the ex-
purgated ensemble? Some progress in this direction has
been made in [10].

The exact evaluation of
[EC(n, ,;27,;5)[P{,T(G, 6)] and Ec(n7w27x5)[P}3T(G, 6)]

is, in general, a nontrivial task and it would be highly de-
sirable to find simpler expressions. It is particularly frus-
trating that not even the simple recursion for the cycle
code case seems amenable to an analytic attack. For ex-
ample, if we try the obvious path employing generating
functions, the resulting partial differential equation does
not seem to admit an analytic solution. Simpler bounds
on these quantities would also be useful.

) Once simpler expressions for the regular case have been

found, it is natural to investigate if exact expressions can
also be given for the irregular case.

These expressions can then be used to finagtienum
degree distribution pairs for a given length

Find exact expressions for the bit and block erasure prob-
ability for LDPC ensembles under ML decoding. Com-
paring then the expressions for the iterative decoding of
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LDPC ensembles with the ones for the ML of LDPC enways, and conversely, aty m matrix of rank/ can be mapped
sembles and the ones for the ML of standard random én-aunique(! — 1) x m matrix of rank(/ — 1) by deleting the
sembles it will then be possible to assess how much Idsst row. It follows that

is due to the structure of the codes and how much IO?RZ, m, 1) = R(I—1, m, [ — 1)(2™ — 2t=1),
is due to the suboptimum decoding. A related but sim-

pler problem is to find the threshold for LDPC code@nd: therefore, that
below which theblock erasure probability can be made = i .
arbitrarily small. It should be interesting to see for which R({, m, 1) = H 2" -2)=2 H 1-27").
codes the threshold for bit and block erasure probabilig_ =0 =0

are different and for which they are the same. Some p rl_naIIy, to prove'the recu.rsion we argue as follows. C.onsiderthe
number of matrices of dimensidn< m and rankk. Split these

2<I<m

tial answers to the last question can be found in [10].
6)

matrices into those matrices such that after deletion of the last

Find exact expressions for the bit and block error prolew the resulting matrices of dimensi¢h— 1) x m have rank

ability of LDPC ensembles under iterative decoding fok and those that have rarik — 1). The first such group has by

more general channels.

definition cardinalityR(l — 1, m, k) and each element in this

7) Apply the same analysis to other ensembles, e.g., repeg,i

8) In this paper, we assumed that the decoder proceeds umtrix of rankk in exactly(2™ —

oup can be extended tol a< m matrix of rankk in exactly
“distinct ways. The second group has cardinaity — 1, m,
k—1) and each element in this group can be extended tora
21y distinct ways. O

accumulate (RA) ensembles [2].

no further progress is achieved. What is the distribution of

the number of required iterations? Also, since measure- APPENDIX B

ments by MacKay and Kanter have indicated that the dis- UNION BOUNDS

tribution of the number of required iterations have slowly ¢ js yseful to derive union bounds on the block and bit era-

decaying tails it is interesting to see how the error probgyre probabilities of the standard random ensemble as well as for
bilities behave if we perform a fixed number of iterations, ppc ensembles under ML decoding. We start with the stan-

APPENDIX A
FuLL RANK MATRICES

dard random ensemble.

A. Random Ensembles
Lemma B.1 [Union Bound for Standard Random Ensembles

Lemma A.1:Let R(l, m, k) denote the number of binary Under ML Decoding]:

matrices of dimensioh x m and rankk. By symmetry

R(l, m, k) = R(m, 1, k).

Forl < m
r ]_’ 0=Fk<l
-1 ]
2mUTT (1 =20, 0<k=1
=0
R(lv m, k) = R(l — 1, m, k‘)2k
+R( -1, m, k—1)(2m — 2k1),
0<k<l
\ 0, otherwise.
(A1)

Proof: Clearly, there is exactly onkex m matrix of zero
rank, namely, the all-zero matrix, so th&ftl, m, 0) = 1, for
0 < [. Next, note that

R(1,m,1)=2m" -1
since any nonzero binary element ®@F(2)™ forms al x m
matrix of rankl. Further by induction, an{l — 1) x m matrix

of rank (I — 1) can be extended tolax m matrix of rankl in
exactly

(2771 _ 21—1)

n

N z": <Z> Ge_gn_e%

e=n—k+1

n—k n
< ) eegn—€2€—n+k
(&2

Eegn,mPY"(H, 9] < >
+ >

e=0
e=n—k+1

n—k
- n e=n—e € qe—n+k
EctnnASH, ] < 3 () © genth
e=0

Proof: First note that
Pr{rank H¢) < |€]}
=Pr{3z € GF(2)EN\{0}: HeazT =07}
> Pr{He" =0"}

*CGF(2)I€1\ [0}

>

2€GF(2)1€1\ {0}

< 2l€l=ntk,

<

_ 2k—n

Therefore,
Ecen,[Ps(H, )]

Z Pr{&} Pr{rank(H¢) < ||}

£C[n]
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= Y Pufe}Prfrank(He) < I} o o <(<1+y>r;<ly>r)n% )
EC[n): |€]<n—k _ Z <|8|)
nl
+ Z Pr{&} Pr{rank(H¢) < ||} wt \W (wl)

EClnl: [E]>n—k wherew(z) denotes the weight af, from which the block era-

< Z Pr{&}2lél—n+k 4 Z Pr{€}  sure probability follows in a straightforward manner. 1

EC[n]: |E]|<n—k EC[n]: |E]>n—k
n—k n ACKNOWLEDGMENT
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